2019 6th International Conference on Machinery, Mechanics, Materials, and Computer Engineering (MMMCE 2019)

Periodic Solution of Nonmonotonic Predator-prey System with Periodic
Coefficients and Undercrowding Effect

Yan Yan!, Zhanji Gui**", and Kaihua Wang®
! Networking Academy, Haikou college of Economics, Haikou, Hainan, 571158, P.R.China

2 Department of Software Engineering, Hainan College of Software Technology, Qionghai, Hainan, 571400,
P.R. China

%School of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan, 571158, P.R. China
"624163666@0q.com
*The corresponding author

Keywords: Periodic Solution; Degree theorem; Undercrowding effect.

Abstract: The paper studies nonmonotonic predator and prey model with periodic coefficients and
undercrowding effect. Based on some mathematical analysis theories, the paper makes use of
Mawhin’s continuation theorem, which gives the existence theorem of periodic solution of the
sufficient conditions. In the end, the paper gives a numerical simulation example, which gets the
validity of the results.

1. Introduction

As is well known, a framework of predator-prey interaction in this wide sense was established by
Volterra [1] in a set of simultaneous differential equations having the form

{X(t) =f(x)-g9(xy),
y(©) =u(g(x.y), y)-v(),

where X represent densities of predator and y represent densities of prey. The functions f is
density of the rates of prey reproduction, g is density of prey death due to predation, uis predator
reproduction, andv is predator death,which are given concrete forms, f (x) = ax® /(N, + x) —bx—cx* ,
g(x, y)=mn-xy/(m+nx), u(g(x,y),y)=g(xy)-y-d/(N,+y),v(y)=ey. Thus, incorporating this

concrete forms into the framework of Eq.1, we have the basic differential equation model of
predator-prey interaction[2],

1)

2
%: X oy mnxy |
dt N, +Xx m+ nx
dy dmnxy?

= —ey.
dt  (m+nx)(N,+y)

In this section, we will account the corresponding predator and prey model with periodic
undercrowding effect and coefficients , we obtain

%: a(t)X2 —b(t)X—C(t)Xz— m(t)n(t)xy
dt N, (t)+x m(t) + n(t)x’
dy  d(m(t)n(t)xy®

dt (m()+n()x)(N,(t)+Y)

where X represent densities of predator and y represent densities of prey.

(2)

—e(t)y,
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a(t), b(t), c(t), d(t), e(t), n(t),m(t), N,(t) and N,(t) are strictly positive periodic functions , at the
same time continuous and bounded with @ > 0.

2. Existence of Periodic Solutions

In this section, in order to explore the existence of periodic solution of Eq. 2, we use Mawhin's
continuation theorem to prove the existence of periodic solutions of system (1). More details can be
referred to [3].

Lemma 1.([3]) Let's define X and Y are Banach spaces. Definer an operator equation
Lx=ANx, and L: DomL (1 X —Y is a Fredholm operator of index zero, 1 €[0,1] is a parameter,

then there exist two projectors P: X — X and Q:Y —Y such that ImP = KerL and ImL = KerQ.

Assume that N:Q —Y is L- compact on Q, where Q is open bounded in X . Furthermore,
assume that
(a)every solution x € 9Q () DomLfor A € (0,1) , Lx = ANX;

(b) QNx is not zero for each x € 0Q (1 KerL;
(c) the brouwer degree deg{JQN, Q[ KerL,0}is not equal to zero.

Thenin QN DomL, Lx=Nx has at least one solution .
First, let's make some preparations.

a(t) —c(®N, ()

L (1) = L) = MO L (i < 4Om®
' N P mt)+n()exp{H,} ’ N, ()
U:lru(s)ds, H, = In[§:5j+2§a}.
I0) 0

Theorem 1. If In > 28w so that there is at least one positive w -periodic

solution for Eq.2.
Proof. We can let x =exp{u,}, y =exp{u,}, then the Eq.2 becomes

oA mOnewtud ) oo
0~ et g [P0

Uz(t) — d(t)m(t) exp{ul +u2}n(t) —e(t).
[m(t) +n(t) exp{u, 1IN, (t) + exp{u,}]

In order to use Lemma 1, we set X =Z ={u = (u,(t),u,(t) e C(R,R?) |u(t + ®) = u(t)}, then it is
standard to show that both X and Z are Banach space when they are endowed with the norm

1Ty (), v ()] = max uy ()] + max [ u, ()]

Set L:DomLc X —-Z as Lu=u"and Pu=Qu=u.

L is a Fredholm operator of index zero that can be easily proved, N is L - compact on Q for
any given open and P, Q are mappings, Q is bound subset in X .
According to equation Lu = ANu, assume that u(t) =(u,,u,) € Z is a solution of Eq. 4 for a
certain 4 € (0,1). According to Eq. 3 over the interval [0,®], we can

o a(t)exp{u} . o m(ON() exp{u,}
b vepna™ {b(t) FeOEPEI  nexpud [ ®

©)
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S Iw d(t)m(t)n(t) exp{u, +u,} ¢ (5)
o [m(t)+n(t) exp{u, }IIN, (t) +exp{u,3]
From Eg. 3-Eq. 5, we obtain
o o| a(t)exp{u.} m(t)n(t) exp{u,}

Jy lugdt < 2, {Nl(t)+exp{u1}+b(t)+c(t) P D explu | ©

_or_a®exp{u} oo

o N, (t)+exp{u} ’

o, o d(t)m(t)n(t) exp{u, +u,} 2 e

jo lug|dt < 2 jo Lm(t) e HIIN, O+ PGt + e(t)}dt <2 jo e(t)dt = 28 . @)

Note that (u,(t),u,(t))eZ , then exists &,n, €[0,] ,such that ui(fi)zti[rgf]ui(t) , U(n)=

sup u;(t). By Eq. 4-Eq. 6, we have

te[0,w]

ao=|["a®dt> [’ N‘j‘((tt)) i’;‘i’({p“{li} dt > [ (b(t) + c(t)expfu, (&)1t > b oo+ Coexpu, (&)},

which implies

ul(cfl)ﬁlngga, ul(t)£2§a)+ln(§:6J _H, ®)

C

By Eqg. 4, we also have

> al) o a o
fo N, (1) exp{u, Jdt ZL N, (t) + exp {ul}exp{ul}dt > L (b(t) +c(t) exp{u, ()}t
a(t)

exp{ul(m)}jo‘”[ NGO —c(t)]dt > ["b(t)dt;

which implies

u, (t) > In%—Zéw =L,. 9

1

u, (7,) > In

S| o

By Eqg. 4, we also have

aw=["amd> [’ a1 oypqudt

N, (t) +exp{u,}
o o m(t)n(t) exp{u,} O
> jo b(t)dt + jo ) nOephd dt > b w+ Twexp{u, (&)}
which implies
L)< 0,(&)+ [ uy @) it <In D s H, (10)

r, T,
By Eg. 5, we also have
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jw d@®m(t)exp{u,} . o f d®m(®n(t) exp{u, +U,} .
0 N, (t) ° (N, (t)exp{u}

S jw d(t)m(t)n(t) exp{u, +u,}

%0 [m(t) +n(t) exp{u JIIN, (t) + exp{u,}]

which implies

WIS 1020 [ Ot =In2 -280 =L, (12)

&
L

w

Hence, Eq. 8-Eq.10 and Eq.11 imply that sup,po U (t)<sup.po.{LIIH [} =D,
SUP 0,07 [ Uz (1) | <SUP, o o{ILo]s|Ho =D, . Clearly, D, (i=12) are independent of 4. Denote
D=D,+D,+D,, where D,>0 is taken sufficiently large, such that max{|u,|,|u, [}< D, and
define Q={u(t) e Z:||u|< D}. By now we have proved that Q satisfies all the requirements of

Lemma 1. Hence, we derive that system (1) has at least one positive @ - periodic solution. The
proof is complete.

3. An Example of Numerical Simulations
In this section, we shall discuss an example to illustrate main results. For system (2), we take
a(t) =6+ 3cost, b(t)=%+0.2c:ost, c(t)=0.4-0.2sint, n(t)=0.8+0.3cost,
N,(t)=1-0.2cost, N,(t)=0.23-0.23sint, m(t)=0.9-0.3sint, d(t)=0.4+0.2cost,
e(t) =0.06 + 0.06 cost.

Obviously, this condition satisfies theorem 1, Thus Eqg. 2 has a unique 2z -periodic solution (See
Fig. 1-Fig.3, where (x(0),y(0))" =(0.1,0.1)".
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Figure. 1 x(t) picture at time t of system (2) Figure. 2 y(t) picture at time t of system (2) of

system (2)
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Figure. 3 Phase portrait of 2z -periodic solution of system (2)
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