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Abstract: The paper studies nonmonotonic predator and prey model with periodic coefficients and 
undercrowding effect. Based on some mathematical analysis theories, the paper makes use of 
Mawhin’s continuation theorem, which gives the existence theorem of periodic solution of the 
sufficient conditions. In the end, the paper gives a numerical simulation example, which gets the 
validity of the results. 

1. Introduction 
As is well known, a framework of predator-prey interaction in this wide sense was established by 

Volterra [1] in a set of simultaneous differential equations having the form  
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where  x  represent densities of  predator and y represent densities of prey. The functions f  is 
density of the rates of prey reproduction, g is density of prey death due to predation, u is  predator 
reproduction, and v is predator death,which are given concrete forms, 2

1
2 )/()( cxbxxNaxxf −−+=  , 

( ) .)(),/(),(),,(),/(),( 2 eyyvyNdyyxgyyxgunxmxymnyxg =+⋅⋅=+⋅= Thus, incorporating this 
concrete forms into the framework of Eq.1,  we have the basic differential equation model of 
predator-prey interaction[2],  
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In this section, we will account the corresponding predator and prey model with periodic  
undercrowding effect and coefficients , we obtain  
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where x  represent densities of  predator and y represent densities of prey. 
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),(),(),(),(),( tetdtctbta  )(),(),( 1 tNtmtn  and )(2 tN   are strictly positive periodic functions , at the 
same time continuous and bounded with 0>ω . 

2. Existence of Periodic Solutions 
In this section, in order to explore the existence of periodic solution of Eq. 2, we use Mawhin's 

continuation theorem to prove the existence of periodic solutions of system (1). More details can be 
referred to [3]. 

Lemma 1.([3]) Let's define X  and Y  are Banach spaces. Definer an operator equation 
NxLx λ= , and :L YXDomL →  is a Fredholm operator of index zero , ]1,0[∈λ  is a parameter, 

then there exist two projectors XXP →:  and YYQ →:  such that KerLP =Im  and KerQL =Im . 
Assume that YN →Ω:  is L - compact on Ω , where Ω  is open bounded in X . Furthermore, 
assume that 

(a)every solution DomLx Ω∂∈ for )1,0(∈λ  , NxLx λ≠ ; 
(b)QNx is not  zero for each KerLx Ω∂∈ ; 
(c)  the brouwer degree { }0,,deg KerLJQN Ω is not equal to zero. 
Then in DomLΩ ,  NxLx =  has at least one solution . 
First, let's make some preparations.  
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 so that  there is at least one positive ω -periodic 

solution for Eq.2. 
Proof. We can let },exp{},exp{ 21 uyux ==  then the  Eq. 2  becomes 
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In order to use Lemma 1, we set )}()(|),()(),(({ 2
21 tutuRRCtutuuZX =+∈=== ω , then it is 

standard to show that both X  and Z  are Banach space when they are endowed with the norm  
.|)(|max|)(|max))(),((|||| 2],0[1],0[21 tutututuu

tt ωω ∈∈
+==   

Set :L Dom ZXL →⊂  as uLu ′=  and  uQuPu == . 
 L  is a Fredholm operator of index zero that can be easily proved,    N  is L - compact on Ω  for 

any given open and P , Q  are mappings,Ω is bound subset  in X . 
According to equation NuLu λ= , assume that Zuutu ∈= ),()( 21  is a solution of  Eq. 4  for a 

certain )1,0(∈λ . According to  Eq. 3  over the interval ],0[ ω , we can 
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From Eq. 3-Eq. 5, we obtain 
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Note that Ztutu ∈))(),(( 21 , then  exists ],0[, ωηξ ∈ii ,such that )(inf)(
],0[
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.  By Eq. 4-Eq. 6, we have 
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By Eq. 4, we also have 
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which implies 
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By Eq. 4, we also have 
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By Eq. 5,  we also have 
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Hence,  Eq. 8-Eq.10 and Eq.11 imply that |}||,{|sup)(sup 11],0[1],0[ HLtu tt ωω ∈∈ <  1: D= ,  

|)(|sup 2],0[ tut ω∈   222],0[ :},{sup DHLt =< ∈ ω . Clearly, iD ( 2,1=i ) are independent of λ . Denote 

321 DDDD ++= , where 03 >D  is taken sufficiently large, such that 321 |}||,max{| Duu ≤  and 
define }||:||)({ DuZtu <∈=Ω . By now we have proved that Ω  satisfies all the requirements of 
Lemma 1. Hence, we derive that system (1) has at least one positive ω - periodic solution. The 
proof is complete. 

3. An Example of Numerical Simulations 
In this section, we shall discuss an example to illustrate main results. For system (2), we take 
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Obviously, this condition satisfies theorem 1, Thus Eq. 2  has a unique 2π -periodic solution (See 
Fig. 1-Fig.3, where  TTyx )1.0,1.0())0(),0(( = .  

 
Figure. 1 )(tx picture at time t  of system (2) 

 

Figure. 2 )(ty picture at time t  of system (2) of 
system (2) 

 
Figure. 3 Phase portrait of π2 -periodic solution of system (2) 
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